Results of Semigroup of Linear Equation Generating a Wave Equation
نویسندگان
چکیده
In this paper, we present results of $\omega$-order preserving partial contraction mapping generating a wave equation. We use the theory semigroup to generate equation by showing that operator $ \begin{pmatrix} 0 & I\\ \Delta \end{pmatrix}, which is $A,$ infinitesimal generator $C_0$-semigroup operators in some appropriately chosen Banach functions. Furthermore show $A$ closed, unique and
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملDifferential Transform Method to two-dimensional non-linear wave equation
In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...
متن کاملExact Controllability of a Non-linear Generalized Damped Wave Equation: Application to the Sine-gordon Equation
In this paper, we give a sufficient conditions for the exact controllability of the non-linear generalized damped wave equation ẅ + ηẇ + γAw = u(t) + f(t, w, u(t)), on a Hilbert space. The distributed control u ∈ L2 and the operator A is positive definite self-adjoint unbounded with compact resolvent. The nonlinear term f is a continuous function on t and globally Lipschitz in the other variabl...
متن کاملNumerical solution of the wave equation using shearlet frames
In this paper, using shearlet frames, we present a numerical method for solving the wave equation. We define a new shearlet system and by the Plancherel theorem, we calculate the shearlet coefficients.
متن کاملA Continuous Wavelet-galerkin Method for the Linear Wave Equation
We consider the continuous space-time Galerkin method for the linear second-order wave equation proposed by French and Peterson in 1996. A bottleneck for this approach is how to solve the discrete problems effectively. In this paper, we tackle this bottleneck by essentially employing wavelet bases in space. We show how to decouple the corresponding linear system and we prove that the resulting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Earthline Journal of Mathematical Sciences
سال: 2022
ISSN: ['2581-8147']
DOI: https://doi.org/10.34198/ejms.11123.173182